Local Property - Properties of Commutative Rings

Properties of Commutative Rings

For commutative rings, ideas of algebraic geometry make it natural to take a "small neighborhood" of a ring to be the localization at a prime ideal. A property is said to be local if it can be detected from the local rings. For instance, being a flat module over a commutative ring is a local property, but being a free module is not. See also Localization of a module.

Read more about this topic:  Local Property

Famous quotes containing the words properties of, properties and/or rings:

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    You held my hand
    and were instant to explain
    the three rings of danger.
    Anne Sexton (1928–1974)