Local Field - Non-archimedean Local Field Theory

Non-archimedean Local Field Theory

For a non-archimedean local field F (with absolute value denoted by |·|), the following objects are important:

  • its ring of integers which is a discrete valuation ring, is the closed unit ball of F, and is compact;
  • the units in its ring of integers which forms a group and is the unit sphere of F;
  • the unique non-zero prime ideal in its ring of integers which is its open unit ball ;
  • a generator ϖ of called a uniformizer of F;
  • its residue field which is finite (since it is compact and discrete).

Every non-zero element a of F can be written as a = ϖnu with u a unit, and n a unique integer. The normalized valuation of F is the surjective function v : FZ ∪ {∞} defined by sending a non-zero a to the unique integer n such that a = ϖnu with u a unit, and by sending 0 to ∞. If q is the cardinality of the residue field, the absolute value on F induced by its structure as a local field is given by

An equivalent definition of a non-archimedean local field is that it is a field that is complete with respect to a discrete valuation and whose residue field is finite.

Read more about this topic:  Local Field

Famous quotes containing the words local, field and/or theory:

    The difference between de jure and de facto segregation is the difference open, forthright bigotry and the shamefaced kind that works through unwritten agreements between real estate dealers, school officials, and local politicians.
    Shirley Chisholm (b. 1924)

    Hardly a book of human worth, be it heaven’s own secret, is honestly placed before the reader; it is either shunned, given a Periclean funeral oration in a hundred and fifty words, or interred in the potter’s field of the newspapers’ back pages.
    Edward Dahlberg (1900–1977)

    There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.
    —A.J. (Alfred Jules)