List of Simple Lie Groups - Symmetric Spaces

Symmetric Spaces

Symmetric spaces are classified as follows.

First, the universal cover of a symmetric space is still symmetric, so we can reduce to the case of simply connected symmetric spaces. (For example, the universal cover of a real projective plane is a sphere.)

Second, the product of symmetric spaces is symmetric, so we may as well just classify the irreducible simply connected ones (where irreducible means they cannot be written as a product of smaller symmetric spaces).

The irreducible simply connected symmetric spaces are the real line, and exactly two symmetric spaces corresponding to each non-compact simple Lie group G, one compact and one non-compact. The non-compact one is a cover of the quotient of G by a maximal compact subgroup H, and the compact one is a cover of the quotient of the compact form of G by the same subgroup H. This duality between compact and non-compact symmetric spaces is a generalization of the well known duality between spherical and hyperbolic geometry.

Read more about this topic:  List Of Simple Lie Groups

Famous quotes containing the word spaces:

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)