Simple Lie Groups of Small Dimension
The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple.
Dim | Groups | Symmetric space | Compact dual | Rank | Dim | |
---|---|---|---|---|---|---|
1 | R, S1=U(1)=SO2(R)=Spin(2) | Abelian | Real line | 0 | 1 | |
3 | S3=Sp(1)=SU(2)=Spin(3), SO3(R)=PSU(2) | Compact | ||||
3 | SL2(R)=Sp2(R), SO2,1(R) | Split, Hermitian, hyperbolic | Hyperbolic plane H2 | Sphere S2 | 1 | 2 |
6 | SL2(C)=Sp2(C), SO3,1(R), SO3(C) | Complex | Hyperbolic space H3 | Sphere S3 | 1 | 3 |
8 | SL3(R) | Split | Euclidean structures on R3 | Real structures on C3 | 2 | 5 |
8 | SU(3) | Compact | ||||
8 | SU(1,2) | Hermitian, quasi-split, quaternionic | Complex hyperbolic plane | Complex projective plane | 1 | 4 |
10 | Sp(2)=Spin(5), SO5(R) | Compact | ||||
10 | SO4,1(R), Sp2,2(R) | Hyperbolic, quaternionic | Hyperbolic space H4 | Sphere S4 | 1 | 4 |
10 | SO3,2(R),Sp4(R) | Split, Hermitian | Siegel upper half space | Complex structures on H2 | 2 | 6 |
14 | G2 | Compact | ||||
14 | G2 | Split, quaternionic | Non-division quaternionic subalgebras of non-division octonions | Quaternionic subalgebras of octonions | 2 | 8 |
15 | SU(4)=Spin(6), SO6(R) | Compact | ||||
15 | SL4(R), SO3,3(R) | Split | R3 in R3,3 | Grassmannian G(3,3) | 3 | 9 |
15 | SU(3,1) | Hermitian | Complex hyperbolic space | Complex projective space | 1 | 6 |
15 | SU(2,2), SO4,2(R) | Hermitian, quasi-split, quaternionic | R2 in R2,4 | Grassmannian G(2,4) | 2 | 8 |
15 | SL2(H), SO5,1(R) | Hyperbolic | Hyperbolic space H5 | Sphere S5 | 1 | 5 |
16 | SL3(C) | Complex | SU(3) | 2 | 8 | |
20 | SO5(C), Sp4(C) | Complex | Spin5(R) | 2 | 10 | |
21 | SO7(R) | Compact | ||||
21 | SO6,1(R) | Hyperbolic | Hyperbolic space H6 | Sphere S6 | ||
21 | SO5,2(R) | Hermitian | ||||
21 | SO4,3(R) | Split, quaternionic | ||||
21 | Sp(3) | Compact | ||||
21 | Sp6(R) | Split, hermitian | ||||
21 | Sp4,2(R) | Quaternionic | ||||
24 | SU(5) | Compact | ||||
24 | SL5(R) | Split | ||||
24 | SU4,1 | Hermitian | ||||
24 | SU3,2 | Hermitian, quaternionic | ||||
28 | SO8(R) | Compact | ||||
28 | SO7,1(R) | Hyperbolic | Hyperbolic space H7 | Sphere S7 | ||
28 | SO6,2(R) | Hermitian | ||||
28 | SO5,3(R) | Quasi-split | ||||
28 | SO4,4(R) | Split, quaternionic | ||||
28 | SO*8(R) | Hermitian | ||||
28 | G2(C) | Complex | ||||
30 | SL4(C) | Complex |
Read more about this topic: List Of Simple Lie Groups
Famous quotes containing the words simple, lie, groups, small and/or dimension:
“Happy you poets who can be present and so present by a simple flicker of your genius, and not, like the clumsier race, have to lay a train and pile up faggots that may not after prove in the least combustible!”
—Henry James (18431916)
“For six years you shall sow your land and gather in its yield; but the seventh year you shall let it rest and lie fallow, so that the poor of your people may eat; and what they leave the wild animals may eat. You shall do the same with your vineyard, and with your olive orchard.”
—Bible: Hebrew, Exodus 23:10,11.
“And seniors grow tomorrow
From the juniors today,
And even swimming groups can fade,
Games mistresses turn grey.”
—Philip Larkin (19221986)
“The exercise of power is determined by thousands of interactions between the world of the powerful and that of the powerless, all the more so because these worlds are never divided by a sharp line: everyone has a small part of himself in both.”
—Václav Havel (b. 1936)
“By intervening in the Vietnamese struggle the United States was attempting to fit its global strategies into a world of hillocks and hamlets, to reduce its majestic concerns for the containment of communism and the security of the Free World to a dimension where governments rose and fell as a result of arguments between two colonels wives.”
—Frances Fitzgerald (b. 1940)