Simple Lie Groups of Small Dimension
The following table lists some Lie groups with simple Lie algebras of small dimension. The groups on a given line all have the same Lie algebra. In the dimension 1 case, the groups are abelian and not simple.
Dim | Groups | Symmetric space | Compact dual | Rank | Dim | |
---|---|---|---|---|---|---|
1 | R, S1=U(1)=SO2(R)=Spin(2) | Abelian | Real line | 0 | 1 | |
3 | S3=Sp(1)=SU(2)=Spin(3), SO3(R)=PSU(2) | Compact | ||||
3 | SL2(R)=Sp2(R), SO2,1(R) | Split, Hermitian, hyperbolic | Hyperbolic plane H2 | Sphere S2 | 1 | 2 |
6 | SL2(C)=Sp2(C), SO3,1(R), SO3(C) | Complex | Hyperbolic space H3 | Sphere S3 | 1 | 3 |
8 | SL3(R) | Split | Euclidean structures on R3 | Real structures on C3 | 2 | 5 |
8 | SU(3) | Compact | ||||
8 | SU(1,2) | Hermitian, quasi-split, quaternionic | Complex hyperbolic plane | Complex projective plane | 1 | 4 |
10 | Sp(2)=Spin(5), SO5(R) | Compact | ||||
10 | SO4,1(R), Sp2,2(R) | Hyperbolic, quaternionic | Hyperbolic space H4 | Sphere S4 | 1 | 4 |
10 | SO3,2(R),Sp4(R) | Split, Hermitian | Siegel upper half space | Complex structures on H2 | 2 | 6 |
14 | G2 | Compact | ||||
14 | G2 | Split, quaternionic | Non-division quaternionic subalgebras of non-division octonions | Quaternionic subalgebras of octonions | 2 | 8 |
15 | SU(4)=Spin(6), SO6(R) | Compact | ||||
15 | SL4(R), SO3,3(R) | Split | R3 in R3,3 | Grassmannian G(3,3) | 3 | 9 |
15 | SU(3,1) | Hermitian | Complex hyperbolic space | Complex projective space | 1 | 6 |
15 | SU(2,2), SO4,2(R) | Hermitian, quasi-split, quaternionic | R2 in R2,4 | Grassmannian G(2,4) | 2 | 8 |
15 | SL2(H), SO5,1(R) | Hyperbolic | Hyperbolic space H5 | Sphere S5 | 1 | 5 |
16 | SL3(C) | Complex | SU(3) | 2 | 8 | |
20 | SO5(C), Sp4(C) | Complex | Spin5(R) | 2 | 10 | |
21 | SO7(R) | Compact | ||||
21 | SO6,1(R) | Hyperbolic | Hyperbolic space H6 | Sphere S6 | ||
21 | SO5,2(R) | Hermitian | ||||
21 | SO4,3(R) | Split, quaternionic | ||||
21 | Sp(3) | Compact | ||||
21 | Sp6(R) | Split, hermitian | ||||
21 | Sp4,2(R) | Quaternionic | ||||
24 | SU(5) | Compact | ||||
24 | SL5(R) | Split | ||||
24 | SU4,1 | Hermitian | ||||
24 | SU3,2 | Hermitian, quaternionic | ||||
28 | SO8(R) | Compact | ||||
28 | SO7,1(R) | Hyperbolic | Hyperbolic space H7 | Sphere S7 | ||
28 | SO6,2(R) | Hermitian | ||||
28 | SO5,3(R) | Quasi-split | ||||
28 | SO4,4(R) | Split, quaternionic | ||||
28 | SO*8(R) | Hermitian | ||||
28 | G2(C) | Complex | ||||
30 | SL4(C) | Complex |
Read more about this topic: List Of Simple Lie Groups
Famous quotes containing the words simple, lie, groups, small and/or dimension:
“Although military, economic and political strength certainly favors the more powerful side, the matter of simple justice is a counterbalancing factor.”
—Jimmy Carter (James Earl Carter, Jr.)
“A lie is real; it aims at success. A liar is a realist.”
—Christina Stead (19021983)
“Writers and politicians are natural rivals. Both groups try to make the world in their own images; they fight for the same territory.”
—Salman Rushdie (b. 1947)
“The important thing is that when you come to understand something you act on it, no matter how small that act is. Eventually it will take you where you need to go.”
—Helen Prejean (b. 1940)
“God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.”
—Marcus Minucius Felix (2nd or 3rd cen. A.D.)