Philosophy of Mathematics
These terms discuss mathematics as mathematicians think of it; they connote common intellectual strategies or notions the investigation of which somehow underlies much of mathematics.
- abstract nonsense
- Also general abstract nonsense or generalized abstract nonsense, a tongue-in-cheek reference to category theory, using which one can employ arguments that establish a (possibly concrete) result without reference to any specifics of the present problem.
- canonical
- A reference to a standard or choice-free presentation of some mathematical object. The term canonical is also used more informally, meaning roughly "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes.
—The proof that there are infinitely many prime numbers.
—The proof of the irrationality of the square root of two.
—Freek Wiedijk (2006, p.2)- deep
- A result is called "deep" if its proof requires concepts and methods that are advanced beyond the concepts needed to formulate the result. The prime number theorem, proved with techniques from complex analysis, was thought to be a deep result until elementary proofs were found. The fact that π is irrational is a deep result because it requires considerable development of real analysis to prove, even though it can be stated in terms of simple number theory and geometry.
- elegant
- Also beautiful; an aesthetic term referring to the ability of an idea to provide insight into mathematics, whether by unifying disparate fields, introducing a new perspective on a single field, or providing a technique of proof which is either particularly simple, or captures the intuition or imagination as to why the result it proves is true. Gian-Carlo Rota distinguished between elegance of presentation and beauty of concept, saying that for example, some topics could be written about elegantly although the mathematical content is not beautiful, and some theorems or proofs are beautiful but may be written about inelegantly.
Mathematicians may say that a theorem is beautiful when they really mean to say that it is enlightening. We acknowledge a theorem's beauty when we see how the theorem 'fits' in its place....We say that a proof is beautiful when such a proof finally gives away the secret of the theorem.... —Gian-Carlo Rota (1977, pp.173–174, pp.181–182)
- elementary
- A proof or result is called "elementary" if it requires only basic concepts and methods, in contrast to so-called deep results. The concept of "elementary proof" is used specifically in number theory, where it usually refers to a proof that does not use methods from complex analysis.
- folklore
- A result is called "folklore" if it is non-obvious, has not been published, and yet is generally known among the specialists in a field. Usually, it is unknown who first obtained the result. If the result is important, it may eventually find its way into the textbooks, whereupon it ceases to be folklore.
- natural
- Similar to "canonical" but more specific, this term makes reference to a description (almost exclusively in the context of transformations) which holds independently of any choices. Though long used informally, this term has found a formal definition in category theory.
- pathological
- An object behaves pathologically if it fails to conform to the generic behavior of such objects, fails to satisfy certain regularity properties (depending on context), or simply disobeys mathematical intuition. These can be and often are contradictory requirements. Sometimes the term is more pointed, referring to an object which is specifically and artificially exhibited as a counterexample to these properties.
- rigor (rigour)
- Mathematics strives to establish its results using indisputable logic rather than informal descriptive argument. Rigor is the use of such logic in a proof.
- well-behaved
- An object is well-behaved (in contrast with being pathological) if it does satisfy the prevailing regularity properties, or sometimes if it conforms to intuition (but intuition often suggests the opposite behavior as well).
Read more about this topic: List Of Mathematical Jargon
Famous quotes containing the words philosophy and/or mathematics:
“You may decry some of these scruples and protest that there are more things in heaven and earth than are dreamt of in my philosophy. I am concerned, rather, that there should not be more things dreamt of in my philosophy than there are in heaven or earth.”
—Nelson Goodman (b. 1906)
“I must study politics and war that my sons may have liberty to study mathematics and philosophy.”
—John Adams (17351826)