Complex Logarithm Identities
The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface. A single valued version called the principal value of the logarithm can be defined which is discontinuous on the negative x axis and equals the multivalued version on a single branch cut.
Read more about this topic: List Of Logarithmic Identities
Famous quotes containing the word complex:
“We must open our eyes and see that modern civilization has become so complex and the lives of civilized men so interwoven with the lives of other men in other countries as to make it impossible to be in this world and out of it.”
—Franklin D. Roosevelt (18821945)