Liouville's Theorem (complex Analysis) - Proof

Proof

The theorem follows from the fact that holomorphic functions are analytic. If f is an entire function, it can be represented by its Taylor series about 0:

where (by Cauchy's integral formula)


a_k = \frac{f^{(k)}(0)}{k!} = {1 \over 2 \pi i} \oint_{C_r}
\frac{f( \zeta )}{\zeta^{k+1}}\,d\zeta

and Cr is the circle about 0 of radius r > 0. Suppose f is bounded: i.e. there exists a constant M such that |f(z)| ≤ M for all z. We can estimate directly


| a_k |
\le \frac{1}{2 \pi} \oint_{C_r} \frac{ | f ( \zeta ) | }{ | \zeta |^{k+1} } \, |d\zeta|
\le \frac{1}{2 \pi} \oint_{C_r} \frac{ M }{ r^{k+1} } \, |d\zeta|
= \frac{M}{2 \pi r^{k+1}} \oint_{C_r} |d\zeta|
= \frac{M}{2 \pi r^{k+1}} 2 \pi r
= \frac{M}{r^k},

where in the second inequality we have used the fact that |z|=r on the circle Cr. But the choice of r in the above is an arbitrary positive number. Therefore, letting r tend to infinity (we let r tend to infinity since f is analytic on the entire plane) gives ak = 0 for all k ≥ 1. Thus f(z) = a0 and this proves the theorem.

Read more about this topic:  Liouville's Theorem (complex Analysis)

Famous quotes containing the word proof:

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    In the reproof of chance
    Lies the true proof of men.
    William Shakespeare (1564–1616)