Proof
The theorem follows from the fact that holomorphic functions are analytic. If f is an entire function, it can be represented by its Taylor series about 0:
where (by Cauchy's integral formula)
and Cr is the circle about 0 of radius r > 0. Suppose f is bounded: i.e. there exists a constant M such that |f(z)| ≤ M for all z. We can estimate directly
where in the second inequality we have used the fact that |z|=r on the circle Cr. But the choice of r in the above is an arbitrary positive number. Therefore, letting r tend to infinity (we let r tend to infinity since f is analytic on the entire plane) gives ak = 0 for all k ≥ 1. Thus f(z) = a0 and this proves the theorem.
Read more about this topic: Liouville's Theorem (complex Analysis)
Famous quotes containing the word proof:
“In the reproof of chance
Lies the true proof of men.”
—William Shakespeare (15641616)
“War is a beastly business, it is true, but one proof we are human is our ability to learn, even from it, how better to exist.”
—M.F.K. Fisher (19081992)
“a meek humble Man of modest sense,
Who preaching peace does practice continence;
Whose pious lifes a proof he does believe,
Mysterious truths, which no Man can conceive.”
—John Wilmot, 2d Earl Of Rochester (16471680)