Structure of The Set of Liouville Numbers
For each positive integer n, set
.
The set of all Liouville numbers can thus be written as .
Each is an open set; as its closure contains all rationals (the {p/q}'s from each punctured interval), it is also a dense subset of real line. Since it is the intersection of countably many such open dense sets, is comeagre, that is to say, it is a dense Gδ set.
Along with the above remarks about measure, it shows that the set of Liouville numbers and its complement decompose the reals into two sets, one of which is meagre, and the other of Lebesgue measure zero.
Read more about this topic: Liouville Number
Famous quotes containing the words structure of, structure, set and/or numbers:
“Man is more disposed to domination than freedom; and a structure of dominion not only gladdens the eye of the master who rears and protects it, but even its servants are uplifted by the thought that they are members of a whole, which rises high above the life and strength of single generations.”
—Karl Wilhelm Von Humboldt (17671835)
“There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.”
—Donald Davidson (b. 1917)
“He turns agen and drives the noisy crowd
And beats the dogs in noises loud.
He drives away and beats them every one,
And then they loose them all and set them on.
He falls as dead and kicked by boys and men,
Then starts and grins and drives the crowd agen;
Till kicked and torn and beaten out he lies
And leaves his hold and cackles, groans, and dies.”
—John Clare (17931864)
“I had a feeling that out there, there were very poor people who didnt have enough to eat. But they wore wonderfully colored rags and did musical numbers up and down the streets together.”
—Jill Robinson (b. 1936)