Structure of The Set of Liouville Numbers
For each positive integer n, set
.
The set of all Liouville numbers can thus be written as .
Each is an open set; as its closure contains all rationals (the {p/q}'s from each punctured interval), it is also a dense subset of real line. Since it is the intersection of countably many such open dense sets, is comeagre, that is to say, it is a dense Gδ set.
Along with the above remarks about measure, it shows that the set of Liouville numbers and its complement decompose the reals into two sets, one of which is meagre, and the other of Lebesgue measure zero.
Read more about this topic: Liouville Number
Famous quotes containing the words structure, set and/or numbers:
“I really do inhabit a system in which words are capable of shaking the entire structure of government, where words can prove mightier than ten military divisions.”
—Václav Havel (b. 1936)
“When you set out for Ithaca
ask that your way be long.”
—Constantine Cavafy (18631933)
“The barriers of conventionality have been raised so high, and so strangely cemented by long existence, that the only hope of overthrowing them exists in the union of numbers linked together by common opinion and effort ... the united watchword of thousands would strike at the foundation of the false system and annihilate it.”
—Mme. Ellen Louise Demorest 18241898, U.S. womens magazine editor and womans club movement pioneer. Demorests Illustrated Monthly and Mirror of Fashions, p. 203 (January 1870)