Liouville Number - Liouville Numbers and Measure

Liouville Numbers and Measure

From the point of view of measure theory, the set of all Liouville numbers is small. More precisely, its Lebesgue measure is zero. The proof given follows some ideas by John C. Oxtoby.

For positive integers and set:

– we have

Observe that for each positive integer and, we also have

Since and we have

Now and it follows that for each positive integer, has Lebesgue measure zero. Consequently, so has .

In contrast, the Lebesgue measure of the set of all real transcendental numbers is infinite (since is the complement of a null set).

In fact, the Hausdorff dimension of is zero, which implies that the Hausdorff measure of is zero for all dimension . Hausdorff dimension of under other dimension functions has also been investigated.

Read more about this topic:  Liouville Number

Famous quotes containing the words numbers and/or measure:

    The principle of majority rule is the mildest form in which the force of numbers can be exercised. It is a pacific substitute for civil war in which the opposing armies are counted and the victory is awarded to the larger before any blood is shed. Except in the sacred tests of democracy and in the incantations of the orators, we hardly take the trouble to pretend that the rule of the majority is not at bottom a rule of force.
    Walter Lippmann (1889–1974)

    If the pulse of his people shall beat calmly under this experiment, another and another will be tried till the measure of despotism be filled up.
    Thomas Jefferson (1743–1826)