Liouville Numbers and Measure
From the point of view of measure theory, the set of all Liouville numbers is small. More precisely, its Lebesgue measure is zero. The proof given follows some ideas by John C. Oxtoby.
For positive integers and set:
- – we have
Observe that for each positive integer and, we also have
Since and we have
Now and it follows that for each positive integer, has Lebesgue measure zero. Consequently, so has .
In contrast, the Lebesgue measure of the set of all real transcendental numbers is infinite (since is the complement of a null set).
In fact, the Hausdorff dimension of is zero, which implies that the Hausdorff measure of is zero for all dimension . Hausdorff dimension of under other dimension functions has also been investigated.
Read more about this topic: Liouville Number
Famous quotes containing the words numbers and/or measure:
“... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.”
—Mary Barnett Gilson (1877?)
“Letters are above all useful as a means of expressing the ideal self; and no other method of communication is quite so good for this purpose.... In letters we can reform without practice, beg without humiliation, snip and shape embarrassing experiences to the measure of our own desires....”
—Elizabeth Hardwick (b. 1916)