Liouville Function - Series

Series

The Dirichlet series for the Liouville function gives the Riemann zeta function as

The Lambert series for the Liouville function is

\sum_{n=1}^\infty \frac{\lambda(n)q^n}{1-q^n} =
\sum_{n=1}^\infty q^{n^2} =
\frac{1}{2}\left(\vartheta_3(q)-1\right),

where is the Jacobi theta function.

Read more about this topic:  Liouville Function

Famous quotes containing the word series:

    The professional celebrity, male and female, is the crowning result of the star system of a society that makes a fetish of competition. In America, this system is carried to the point where a man who can knock a small white ball into a series of holes in the ground with more efficiency than anyone else thereby gains social access to the President of the United States.
    C. Wright Mills (1916–1962)

    In the order of literature, as in others, there is no act that is not the coronation of an infinite series of causes and the source of an infinite series of effects.
    Jorge Luis Borges (1899–1986)

    The theory of truth is a series of truisms.
    —J.L. (John Langshaw)