Lines of Longitude - Length of A Degree of Longitude

Length of A Degree of Longitude

The length of a degree of longitude depends only on the radius of a circle of latitude. For a sphere of radius a the value of the radius at a latitude φ is acosφ and the length of arc for a one degree (or π/180 radians) increment is


\Delta^1_{\rm LONG}= \frac{\pi}{180}a \cos \phi. \,\!

When the Earth is modelled by an ellipsoid this result must be modified to


\Delta^1_{\rm LONG}=
\frac{\pi a\cos\phi}{180(1 - e^2 \sin^2 \phi)^{1/2}}\,,

where e, the eccentricity of the ellipsoid, is related to the major and minor axes (the equatorial and polar radii respectively) by

110.574 km 111.320 km
15° 110.649 km 107.551 km
30° 110.852 km 96.486 km
45° 111.132 km 78.847 km
60° 111.412 km 55.800 km
75° 111.618 km 28.902 km
90° 111.694 km 0.000 km

e^2=\frac{a^2-b^2}{a^2}.

Cos φ decreases from 1 at the equator to zero at the poles, so the length of a degree of longitude decreases likewise. This contrasts with the small (1%) increase in the length of a degree of latitude. The table shows values of both for the WGS84 ellipsoid, where a=6,378,137.0 m and b=6,356,752.3142 m. Note that the distance between two points 1 degree apart on the same circle of latitude, measured along that circle of latitude, is not the shortest (geodesic) distance between those points; the difference is less than 0.6 m. A calculator for any latitude is provided by the U.S. government's National Geospatial-Intelligence Agency (NGA).

Read more about this topic:  Lines Of Longitude

Famous quotes containing the words length of, length and/or degree:

    With the ancient is wisdom; and in length of days understanding.
    Bible: Hebrew Job, 12:12.

    Unless a group of workers know their work is under surveillance, that they are being rated as fairly as human beings, with the fallibility that goes with human judgment, can rate them, and that at least an attempt is made to measure their worth to an organization in relative terms, they are likely to sink back on length of service as the sole reason for retention and promotion.
    Mary Barnett Gilson (1877–?)

    In all pointed sentences, some degree of accuracy must be sacrificed to conciseness.
    Samuel Johnson (1709–1784)