Boolean Functions
In Boolean algebra, a linear function is a function for which there exist such that
- for all
A Boolean function is linear if one of the following holds for the function's truth table:
- In every row in which the truth value of the function is 'T', there are an odd number of 'T's assigned to the arguments and in every row in which the function is 'F' there is an even number of 'T's assigned to arguments. Specifically, f('F', 'F', ..., 'F') = 'F', and these functions correspond to linear maps over the Boolean vector space.
- In every row in which the value of the function is 'T', there is an even number of 'T's assigned to the arguments of the function; and in every row in which the truth value of the function is 'F', there are an odd number of 'T's assigned to arguments. In this case, f('F', 'F', ..., 'F') = 'T'.
Another way to express this is that each variable always makes a difference in the truth-value of the operation or it never makes a difference.
Negation, Logical biconditional, exclusive or, tautology, and contradiction are linear functions.
Read more about this topic: Linearity
Famous quotes containing the word functions:
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)