The Prediction Model
The most common representation is
where is the predicted signal value, the previous observed values, and the predictor coefficients. The error generated by this estimate is
where is the true signal value.
These equations are valid for all types of (one-dimensional) linear prediction. The differences are found in the way the parameters are chosen.
For multi-dimensional signals the error metric is often defined as
where is a suitable chosen vector norm. Predictions such as are routinely used within Kalman filters and smoothers to estimate current and past signal values, respectively.
Read more about this topic: Linear Prediction
Famous quotes containing the words prediction and/or model:
“Recent studies that have investigated maternal satisfaction have found this to be a better prediction of mother-child interaction than work status alone. More important for the overall quality of interaction with their children than simply whether the mother works or not, these studies suggest, is how satisfied the mother is with her role as worker or homemaker. Satisfied women are consistently more warm, involved, playful, stimulating and effective with their children than unsatisfied women.”
—Alison Clarke-Stewart (20th century)
“... if we look around us in social life and note down who are the faithful wives, the most patient and careful mothers, the most exemplary housekeepers, the model sisters, the wisest philanthropists, and the women of the most social influence, we will have to admit that most frequently they are women of cultivated minds, without which even warm hearts and good intentions are but partial influences.”
—Mrs. H. O. Ward (18241899)