Linear Least Squares (mathematics) - The General Problem

The General Problem

Consider an overdetermined system

of m linear equations in n unknown coefficients, β1,β2,…,βn, with m > n. This can be written in matrix form as

where

\mathbf {X}=\begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1n} \\
X_{21} & X_{22} & \cdots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{m1} & X_{m2} & \cdots & X_{mn}
\end{pmatrix}, \qquad \boldsymbol \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}, \qquad \mathbf y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m
\end{pmatrix}.

Such a system usually has no solution, so the goal is instead to find the coefficients β which fit the equations "best," in the sense of solving the quadratic minimization problem

where the objective function S is given by

A justification for choosing this criterion is given in properties below. This minimization problem has a unique solution, provided that the n columns of the matrix X are linearly independent, given by solving the normal equations

Read more about this topic:  Linear Least Squares (mathematics)

Famous quotes containing the words general and/or problem:

    The general feeling was, and for a long time remained, that one had several children in order to keep just a few. As late as the seventeenth century . . . people could not allow themselves to become too attached to something that was regarded as a probable loss. This is the reason for certain remarks which shock our present-day sensibility, such as Montaigne’s observation, “I have lost two or three children in their infancy, not without regret, but without great sorrow.”
    Philippe Ariés (20th century)

    But a problem occurs about nothing. For that from which something is made is a cause of the thing made from it; and, necessarily, every cause contributes some assistance to the effect’s existence.
    Anselm of Canterbury (1033–1109)