Linear Dynamical System

Linear Dynamical System

Linear dynamical systems are a special type of dynamical system where the equation governing the system's evolution is linear. While dynamical systems in general do not have closed-form solutions, linear dynamical systems can be solved exactly, and they have a rich set of mathematical properties. Linear systems can also be used to understand the qualitative behavior of general dynamical systems, by calculating the equilibrium points of the system and approximating it as a linear system around each such point.

Read more about Linear Dynamical System:  Introduction, Solution of Linear Dynamical Systems, Classification in Two Dimensions

Famous quotes containing the word system:

    As long as learning is connected with earning, as long as certain jobs can only be reached through exams, so long must we take this examination system seriously. If another ladder to employment was contrived, much so-called education would disappear, and no one would be a penny the stupider.
    —E.M. (Edward Morgan)