Linear Classifier - Definition

Definition

If the input feature vector to the classifier is a real vector, then the output score is

where is a real vector of weights and f is a function that converts the dot product of the two vectors into the desired output. (In other words, is a one-form or linear functional mapping onto R.) The weight vector is learned from a set of labeled training samples. Often f is a simple function that maps all values above a certain threshold to the first class and all other values to the second class. A more complex f might give the probability that an item belongs to a certain class.

For a two-class classification problem, one can visualize the operation of a linear classifier as splitting a high-dimensional input space with a hyperplane: all points on one side of the hyperplane are classified as "yes", while the others are classified as "no".

A linear classifier is often used in situations where the speed of classification is an issue, since it is often the fastest classifier, especially when is sparse. However, decision trees can be faster. Also, linear classifiers often work very well when the number of dimensions in is large, as in document classification, where each element in is typically the number of occurrences of a word in a document (see document-term matrix). In such cases, the classifier should be well-regularized.

Read more about this topic:  Linear Classifier

Famous quotes containing the word definition:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)