Lines in Three-dimensional Space
For two given points in the plane, (x1, y1, z1) and (x2, y2, z2), the three determinants
determine the line containing them. Similarly, for two points in three-dimensional space (x1, y1, z1, w1) and (x2, y2, z2, w2), the line containing them is determined by the six determinants
This is the basis for a system of homogeneous line coordinates in three-dimensional space called Plücker coordinates. Six numbers in a set of coordinates only represent a line when they satisfy an additional equation. This system maps the space of lines in three-dimensional space to a projective space of dimension five, but with the additional requirement the space of lines is a manifold of dimension four.
More generally, the lines in n-dimensional projective space are determined by a system of n(n − 1)/2 homogeneous coordinates that satisfy a set of (n − 2)(n − 3)/2 conditions, resulting in a manifold of dimension 2(n − 1).
Read more about this topic: Line Coordinates
Famous quotes containing the words lines and/or space:
“Every living language, like the perspiring bodies of living creatures, is in perpetual motion and alteration; some words go off, and become obsolete; others are taken in, and by degrees grow into common use; or the same word is inverted to a new sense or notion, which in tract of time makes an observable change in the air and features of a language, as age makes in the lines and mien of a face.”
—Richard Bentley (16621742)
“The peculiarity of sculpture is that it creates a three-dimensional object in space. Painting may strive to give on a two-dimensional plane, the illusion of space, but it is space itself as a perceived quantity that becomes the peculiar concern of the sculptor. We may say that for the painter space is a luxury; for the sculptor it is a necessity.”
—Sir Herbert Read (18931968)