Limb Bud - Relationship Between Hox Gene Expression and Limb Patterning

Relationship Between Hox Gene Expression and Limb Patterning

The Hox genes, which initially establish the anterior-posterior axis of the entire embryo, continue to participate in the dynamic regulation of limb development even after the AER and ZPA have been established. Complex communication ensues as AER-secreted FGFs and ZPA-secreted Shh initiate and regulate Hox gene expression in the developing limb bud. Though many of the finer details remain to be resolved, a number of significant connections between Hox gene expression and the impact on limb development have been discovered. The pattern of Hox gene expression can be divided up into three phases throughout limb bud development, which corresponds to three key boundaries in proximal-distal limb development. The transition from the first phase to the second phase is marked by the introduction of Shh from the ZPA. The transition into the third phase is then marked by changes in how the limb bud mesenchyme responds to Shh signaling. This means that although Shh signaling is required, its effects change over time as the mesoderm is primed to respond differently to it. These three phases of regulation reveal a mechanism by which natural selection can independently modify each of the three limb segments – the stylopod, the zeugopod, and the autopod. The Hox genes are “physically linked in four chromosomal clusters (Hoxa, Hoxb, Hoxc, Hoxd), and their physical position on the chromosome seems to correlate with the time and place of expression. For example, the most 3’ Hoxc genes (HOXC4, HOXC5) are expressed only in the anterior limbs (wings) in chickens, while the more 5’ genes (HOXC9, HOXC10, HOXC11) are expressed only in the posterior limbs (legs). The intermediate genes (HOXC6, HOXC8) are expressed in both the upper and lower limbs. Within the limb bud, expression also varies as a function of the position along the anterior-posterior axis. Such is the case with HOXB9, which is most highly expressed next to the AER, and decreases when moving anteriorly to posteriorly, resulting in the least HOXB9 expression next to the posterior ZPA. HOXB9 expression is inversely proportional to the level of Shh expression, which makes sense, as the ZPA secretes Shh. HOXA and HOXD genes for the most part follow nested expression domains, in which they are activated uniformly along the anterior-posterior axis of the limb itself, but not the anterior-posterior axis of the entire body. Whereas HOXC and HOXB genes tend to be restricted to specific limbs, HOXA and HOXD are usually expressed in all limbs. HOXD9 and HOXD10 are expressed in the developing limb throughout the entire anterior-posterior axis, followed by HOXD11, HOXD12, HOXD13, which are each expressed in more posterior regions, with HOXD13 being restricted to only the most posterior regions of the limb bud. As a result, HOXD expression clusters around the posterior ZPA (where HOXD9, 10, 11, 12, and 13 are all expressed), while less expression occurs around the AER, where only HOXD9 and HOXD10 are expressed.

Read more about this topic:  Limb Bud

Famous quotes containing the words relationship, expression and/or limb:

    From infancy, a growing girl creates a tapestry of ever-deepening and ever- enlarging relationships, with her self at the center. . . . The feminine personality comes to define itself within relationship and connection, where growth includes greater and greater complexities of interaction.
    Jeanne Elium (20th century)

    Call them rules or call them limits, good ones, I believe, have this in common: They serve reasonable purposes; they are practical and within a child’s capability; they are consistent; and they are an expression of loving concern.
    Fred Rogers (20th century)

    ... our great-grandmothers were prudes. The reason why they talked so much about their souls, I fancy, is that there was hardly a limb or a feature of the human body that they thought it proper to mention.
    Katharine Fullerton Gerould (1879–1944)