Infinitesimal Lie Group Representations
If φ: G → H is a homomorphism of Lie groups, and and are the Lie algebras of G and H respectively, then the induced map on tangent spaces is a Lie algebra homomorphism. In particular, a representation of Lie groups
determines a Lie algebra homomorphism
from to the Lie algebra of the general linear group GL(V), i.e. the endomorphism algebra of V.
A partial converse to this statement says that every representation of a finite-dimensional (real or complex) Lie algebra lifts to a unique representation of the associated simply connected Lie group, so that representations of simply-connected Lie groups are in one-to-one correspondence with representations of their Lie algebras.
Read more about this topic: Lie Algebra Representation
Famous quotes containing the words lie and/or group:
“You see, a person of my acquaintance used to divide people into three categories: those who would prefer to have nothing to hide than have to lie, those who would rather lie than have nothing to hide, and finally those who love both lies and secrets.”
—Albert Camus (19131960)
“The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.”
—George Mikes (b. 1912)