Formal Definition
Let (M,g) be a Riemannian manifold (or pseudo-Riemannian manifold). Then an affine connection ∇ is called a Levi-Civita connection if
- it preserves the metric, i.e., ∇g = 0.
 - it is torsion-free, i.e., for any vector fields X and Y we have ∇XY − ∇YX =, where is the Lie bracket of the vector fields X and Y.
 
Condition 1 above is sometimes referred to as compatibility with the metric, and condition 2 is sometimes called symmetry, cf. DoCarmo's text.
Assuming a Levi-Civita connection exists it is uniquely determined. Using conditions 1 and the symmetry of the metric tensor g we find:
By condition 2 the right hand side is equal to
so we find
Since Z is arbitrary, this uniquely determines ∇XY. Conversely, using the last line as a definition one shows that the expression so defined is a connection compatible with the metric, i.e. is a Levi-Civita connection.
Read more about this topic: Levi-Civita Connection
Famous quotes containing the words formal and/or definition:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)