Formal Definition
Let (M,g) be a Riemannian manifold (or pseudo-Riemannian manifold). Then an affine connection ∇ is called a Levi-Civita connection if
- it preserves the metric, i.e., ∇g = 0.
- it is torsion-free, i.e., for any vector fields X and Y we have ∇XY − ∇YX =, where is the Lie bracket of the vector fields X and Y.
Condition 1 above is sometimes referred to as compatibility with the metric, and condition 2 is sometimes called symmetry, cf. DoCarmo's text.
Assuming a Levi-Civita connection exists it is uniquely determined. Using conditions 1 and the symmetry of the metric tensor g we find:
By condition 2 the right hand side is equal to
so we find
Since Z is arbitrary, this uniquely determines ∇XY. Conversely, using the last line as a definition one shows that the expression so defined is a connection compatible with the metric, i.e. is a Levi-Civita connection.
Read more about this topic: Levi-Civita Connection
Famous quotes containing the words formal and/or definition:
“The formal Washington dinner party has all the spontaneity of a Japanese imperial funeral.”
—Simon Hoggart (b. 1946)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)