Formal Definition
Let (M,g) be a Riemannian manifold (or pseudo-Riemannian manifold). Then an affine connection ∇ is called a Levi-Civita connection if
- it preserves the metric, i.e., ∇g = 0.
- it is torsion-free, i.e., for any vector fields X and Y we have ∇XY − ∇YX =, where is the Lie bracket of the vector fields X and Y.
Condition 1 above is sometimes referred to as compatibility with the metric, and condition 2 is sometimes called symmetry, cf. DoCarmo's text.
Assuming a Levi-Civita connection exists it is uniquely determined. Using conditions 1 and the symmetry of the metric tensor g we find:
By condition 2 the right hand side is equal to
so we find
Since Z is arbitrary, this uniquely determines ∇XY. Conversely, using the last line as a definition one shows that the expression so defined is a connection compatible with the metric, i.e. is a Levi-Civita connection.
Read more about this topic: Levi-Civita Connection
Famous quotes containing the words formal and/or definition:
“True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....”
—Marcel Proust (18711922)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)