Arc Length and Elliptic Functions
The determination of the arc length of arcs of the lemniscate leads to elliptic integrals, as was discovered in the eighteenth century. Around 1800, the elliptic functions inverting those integrals were studied by C. F. Gauss (largely unpublished at the time, but allusions in the notes to his Disquisitiones Arithmeticae). The period lattices are of a very special form, being proportional to the Gaussian integers. For this reason the case of elliptic functions with complex multiplication by the square root of minus one is called the lemniscatic case in some sources.
Read more about this topic: Lemniscate Of Bernoulli
Famous quotes containing the words arc, length and/or functions:
“You say that you are my judge; I do not know if you are; but take good heed not to judge me ill, because you would put yourself in great peril.”
—Joan Of Arc (c.14121431)
“At length I met a reverend good old man,”
—George Herbert (15931633)
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)