A learning classifier system, or LCS, is a machine learning system with close links to reinforcement learning and genetic algorithms. First described by John Holland, his LCS consisted of a population of binary rules on which a genetic algorithm altered and selected the best rules. Rule fitness was based on a reinforcement learning technique.
Learning classifier systems can be split into two types depending upon where the genetic algorithm acts. A Pittsburgh-type LCS has a population of separate rule sets, where the genetic algorithm recombines and reproduces the best of these rule sets. In a Michigan-style LCS there is only a single set of rules in a population and the algorithm's action focuses on selecting the best classifiers within that set. Michigan-style LCSs have two main types of fitness definitions, strength-based (e.g. ZCS) and accuracy-based (e.g. XCS). The term "learning classifier system" most often refers to Michigan-style LCSs.
Initially the classifiers or rules were binary, but recent research has expanded this representation to include real-valued, neural network, and functional (S-expression) conditions.
Learning classifier systems are not fully understood mathematically and doing so remains an area of active research. Despite this, they have been successfully applied in many problem domains.
Read more about Learning Classifier System: Overview
Famous quotes containing the words learning and/or system:
“Paul, thou art beside thyself; much learning doth make thee mad.”
—Bible: New Testament Acts, 26:24.
Said by Festus, the Roman Procurator.
“The North American system only wants to consider the positive aspects of reality. Men and women are subjected from childhood to an inexorable process of adaptation; certain principles, contained in brief formulas are endlessly repeated by the press, the radio, the churches, and the schools, and by those kindly, sinister beings, the North American mothers and wives. A person imprisoned by these schemes is like a plant in a flowerpot too small for it: he cannot grow or mature.”
—Octavio Paz (b. 1914)