Learnable Evolution Model

The Learnable Evolution Model (LEM) is a novel, non-Darwinian methodology for evolutionary computation that employs machine learning to guide the generation of new individuals (candidate problem solutions). Unlike standard, Darwinian-type evolutionary computation methods that use random or semi-random operators for generating new individuals (such as mutations and/or recombinations), LEM employs hypothesis generation and instantiation operators.

The hypothesis generation operator applies a machine learning program to induce descriptions that distinguish between high-fitness and low-fitness individuals in each consecutive population. Such descriptions delineate areas in the search space that most likely contain the desirable solutions. Subsequently the instantiation operator samples these areas to create new individuals.

Read more about Learnable Evolution Model:  Selected References

Famous quotes containing the words evolution and/or model:

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    The striking point about our model family is not simply the compete-compete, consume-consume style of life it urges us to follow.... The striking point, in the face of all the propaganda, is how few Americans actually live this way.
    Louise Kapp Howe (b. 1934)