Lazy Caterer's Sequence - Proof

Proof

When a circle is cut n times to produce the maximum number of pieces, represented as p = ƒ(n), the nth cut must be considered; the number of pieces before the last cut is ƒ(n − 1), while the number of pieces added by the last cut is n.

To obtain the maximum number of pieces, the nth cut line should cross all the other previous cut lines inside the circle, but not cross any intersection of previous cut lines. Thus, the nth line itself is cut in n − 1 places, and into n line segments. Each segment divides one piece of the (n − 1)-cut pancake into 2 parts, adding exactly n to the number of pieces. The new line can't have any more segments since it can only cross each previous line once. A cut line can always cross over all previous cut lines, as rotating the knife at a small angle around a point that is not an existing intersection will, if the angle is small enough, intersect all the previous lines including the last one added.

Thus, the total number of pieces after n cuts is

This recurrence relation can be solved. If ƒ(n − 1) is expanded one term the relation becomes

Expansion of the term ƒ(n − 2) can continue until the last term is reduced to ƒ(0), thus,

Since, because there is one piece before any cuts are made, this can be rewritten as

This can be simplified, using the formula for the sum of an arithmetic progression:

Read more about this topic:  Lazy Caterer's Sequence

Famous quotes containing the word proof:

    The chief contribution of Protestantism to human thought is its massive proof that God is a bore.
    —H.L. (Henry Lewis)

    The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.
    Andrew Michael Ramsay (1686–1743)

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)