Lattice Problem

Lattice Problem

In computer science, lattice problems are a class of optimization problems on lattices. The conjectured intractability of such problems is central to construction of secure lattice-based cryptosystems. For applications in such cryptosystems, lattices over vector spaces (often ) or free modules (often ) are generally considered.

For all the problems below, assume that we are given (in addition to other more specific inputs) a basis for the vector space V and a norm N. The norms usually considered are L2. However, other norms (such as Lp) are also considered and show up in a variety of results. Let denote the length of the shortest non-zero vector in the lattice L:  \lambda(L)=\mathbf{min} \{ \|v\|_N | v \in \mathbf{L}, v \neq 0 \}
.

Read more about Lattice Problem:  Shortest Vector Problem (SVP), GapSVP, Closest Vector Problem (CVP), GapCVP, Shortest Independent Vector Problem (SIVP), Bounded Distance Decoding, Covering Radius Problem, Shortest Basis Problem, Use in Cryptography, See Also

Famous quotes containing the word problem:

    Great speeches have always had great soundbites. The problem now is that the young technicians who put together speeches are paying attention only to the soundbite, not to the text as a whole, not realizing that all great soundbites happen by accident, which is to say, all great soundbites are yielded up inevitably, as part of the natural expression of the text. They are part of the tapestry, they aren’t a little flower somebody sewed on.
    Peggy Noonan (b. 1950)