In Lie Groups
More generally, a lattice Γ in a Lie group G is a discrete subgroup, such that the quotient G/Γ is of finite measure, for the measure on it inherited from Haar measure on G (left-invariant, or right-invariant—the definition is independent of that choice). That will certainly be the case when G/Γ is compact, but that sufficient condition is not necessary, as is shown by the case of the modular group in SL2(R), which is a lattice but where the quotient isn't compact (it has cusps). There are general results stating the existence of lattices in Lie groups.
A lattice is said to be uniform or cocompact if G/Γ is compact; otherwise the lattice is called non-uniform.
Read more about this topic: Lattice Points
Famous quotes containing the words lie and/or groups:
“I askèd a thief to steal me a peach
He turned up his eyes
I askd a lithe lady to lie her down
Holy & meek she cries
As soon as I went
An angel came.
He winkd at the thief
And smild at the dame
And without one word said
Had a peach from the tree
And still as a maid
Enjoyd the lady.”
—William Blake (17571827)
“Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.”
—Johan Huizinga (18721945)