In Lie Groups
More generally, a lattice Γ in a Lie group G is a discrete subgroup, such that the quotient G/Γ is of finite measure, for the measure on it inherited from Haar measure on G (left-invariant, or right-invariant—the definition is independent of that choice). That will certainly be the case when G/Γ is compact, but that sufficient condition is not necessary, as is shown by the case of the modular group in SL2(R), which is a lattice but where the quotient isn't compact (it has cusps). There are general results stating the existence of lattices in Lie groups.
A lattice is said to be uniform or cocompact if G/Γ is compact; otherwise the lattice is called non-uniform.
Read more about this topic: Lattice (group)
Famous quotes containing the words lie and/or groups:
“To Time it never seems that he is brave
To set himself against the peaks of snow
To lay them level with the running wave,
Nor is he overjoyed when they lie low,
But only grave, contemplative and grave.”
—Robert Frost (18741963)
“Instead of seeing society as a collection of clearly defined interest groups, society must be reconceptualized as a complex network of groups of interacting individuals whose membership and communication patterns are seldom confined to one such group alone.”
—Diana Crane (b. 1933)