Laser Diode Rate Equations - The Modal Gain

The Modal Gain

Gμ, the gain of the μth mode, can be modelled by a parabolic dependence of gain on wavelength as follows:

where: α is the gain coefficient and ε is the gain compression factor (see below). λμ is the wavelength of the μth mode, δλg is the full width at half maximum (FWHM) of the gain curve, the centre of which is given by

where λ0 is the centre wavelength for N = Nth and k is the spectral shift constant (see below). Nth is the carrier density at threshold and is given by

where Ntr is the carrier density at transparency.

βμ is given by

where

β0 is the spontaneous emission factor, λs is the centre wavelength for spontaneous emission and δλs is the spontaneous emission FWHM. Finally, λμ is the wavelength of the μth mode and is given by

where δλ is the mode spacing.

Read more about this topic:  Laser Diode Rate Equations

Famous quotes containing the word gain:

    We go to gain a little patch of ground
    That hath in it no profit but the name.
    William Shakespeare (1564–1616)