Laser Beam Profiler - Overview

Overview

Laser beam profiling instruments measure the following quantities:

  • Beam width: There are over five definitions of beam width.
  • Beam quality: Quantified by the beam quality parameter, M2.
  • Beam divergence: This is a measure of the spreading of the beam with distance.
  • Beam profile: A beam profile is the 2D intensity plot of a beam at a given location along the beam path. A Gaussian or flat-top profile is often desired. The beam profile indicates nuisance high-order spatial modes in a laser cavity as well as hot spots in the beam.
  • Beam astigmatism: The beam is astigmatic when the vertical and horizontal parts of the beam focus in different locations along the beam path.
  • Beam wander or jitter: The amount that the centroid or peak value of the beam profile moves with time.

Instruments and techniques were developed to obtain the beam characteristics listed above. These include:

  • Camera techniques: These include the direct illumination of a camera sensor. The maximum spot size that will fit onto a CCD sensor is on the order of 10 mm. Alternatively, illuminating a flat diffuse surface with the laser and imaging the light onto a CCD with a lens allows profiling of larger-diameter beams. Viewing lasers off diffuse surfaces is excellent for large beam widths but requires a diffuse surface that has uniform reflectivity (<1% variation) over the illuminated surface.
  • Knife-edge technique: A spinning blade or slit cuts the laser beam before detection by a power meter. The power meter measures the intensity as a function of time. By taking the integrated intensity profiles in a number of cuts, the original beam profile can be reconstructed using algorithms developed for tomography. This usually does not work for pulsed lasers, and does not provide a true 2D beam profile, but it does have excellent resolution, in some cases <1 µm.
  • Phase-front technique: The beam is passed through a 2D array of tiny lenses in a Shack–Hartmann wavefront sensor. Each lens will redirect its portion of the beam, and from the position of the deflected beamlet, the phase of the original beam can be reconstructed.
  • Historical techniques: These include the use of photographic plates and burn plates. For example, high-power carbon dioxide lasers were profiled by observing slow burns into acrylate blocks.

As of 2002, commercial knife-edge measurement systems cost $5,000–$12,000 USD and CCD beam profilers cost $4,000–9,000 USD. The cost of CCD beam profilers has come down in recent years, primarily driven by lower silicon CCD sensor costs, and as of 2008 they can be found for less than $1000 USD.

Read more about this topic:  Laser Beam Profiler