Laser Beam Profiler - Applications

Applications

The applications of laser beam profiling include:

  • Laser cutting: A laser with an elliptical beam profile has a wider cut along one direction than along the other. The width of the beam influences the edges of the cut. A narrower beam width yields high fluence and ionizes, rather than melts, the machined part. Ionized edges are cleaner and have less knurling than melted edges.
  • Nonlinear optics: Frequency conversion efficiency in nonlinear optical materials is proportional to the square (sometimes cubed or more) of the input light intensity. Therefore, to get efficient frequency conversion, the input beam waist must be as small as possible. A beam profiler can help minimize the beam waist in the nonlinear crystal.
  • Alignment: Beam profilers align beams with orders of magnitude better angular accuracy than irises.
  • Laser monitoring: It is often necessary to monitor the laser output to see whether the beam profile changes after long hours of operation. Maintaining a particular beam shape is critical for adaptive optics, nonlinear optics, and laser-to-fiber delivery. In addition, laser status can be measured by imaging the emitters of a pump diode laser bar and counting the number of emitters that have failed or by placing several beam profilers at various points along a laser amplifier chain.
  • Laser and laser amplifier development: Thermal relaxation in pulse-pumped amplifiers causes temporal and spatial variations in the gain crystal, effectively distorting the beam profile of the amplified light. A beam profiler placed at the output of the amplifier yields a wealth of information about transient thermal effects in the crystal. By adjusting the pump current to the amplifier and tuning the input power level, the output beam profile can be optimized in real-time.
  • Far-field measurement: It is important to know the beam profile of a laser for laser radar or free-space optical communications at long distances, the so-called “far-field.” The width of the beam in its far-field determines the amount of energy collected by a communications receiver and the amount of energy incident on the ladar’s target. Measuring the far-field beam profile directly is often impossible in a laboratory because of the long path length required. A lens, on the other hand, transforms the beam so that the far-field occurs near its focus. A beam profiler placed near the focus of the lens measures the far-field beam profile in significantly less benchtop space.
  • Education: Beam profilers can be used for student laboratories to verify diffraction theories and test the Fraunhofer or Fresnel diffraction integral approximations. Other student laboratory ideas include using a beam profiler to measure Poisson’s spot of an opaque disk and to map out the Airy disk diffraction pattern of a clear disk.

Read more about this topic:  Laser Beam Profiler