Large Numbers - Systematically Creating Ever Faster Increasing Sequences

Systematically Creating Ever Faster Increasing Sequences

Given a strictly increasing integer sequence/function (n≥1) we can produce a faster growing sequence (where the superscript n denotes the nth functional power). This can be repeated any number of times by letting, each sequence growing much faster than the one before it. Then we could define, which grows much faster than any for finite k (here ω is the first infinite ordinal number, representing the limit of all finite numbers k). This is the basis for the fast-growing hierarchy of functions, in which the indexing subscript is extended to ever-larger ordinals.

For example, starting with f0(n) = n + 1:

  • f1(n) = f0n(n) = n + n = 2n
  • f2(n) = f1n(n) = 2nn > (2 ↑) n for n ≥ 2 (using Knuth up-arrow notation)
  • f3(n) = f2n(n) > (2 ↑)n n ≥ 2 ↑2 n for n ≥ 2.
  • fk+1(n) > 2 ↑k n for n ≥ 2, k < ω.
  • fω(n) = fn(n) > 2 ↑n - 1 n > 2 ↑n − 2 (n + 3) − 3 = A(n, n) for n ≥ 2, where A is the Ackermann function (of which fω is a unary version).
  • fω+1(64) > fω64(6) > Graham's number (= g64 in the sequence defined by g0 = 4, gk+1 = 3 ↑gk 3).
    • This follows by noting fω(n) > 2 ↑n - 1 n > 3 ↑n - 2 3 + 2, and hence fω(gk + 2) > gk+1 + 2.
  • fω(n) > 2 ↑n - 1 n = (2 → nn-1) = (2 → nn-1 → 1) (using Conway chained arrow notation)
  • fω+1(n) = fωn(n) > (2 → nn-1 → 2) (because if gk(n) = X → nk then X → nk+1 = gkn(1))
  • fω+k(n) > (2 → nn-1 → k+1) > (nnk)
  • fω2(n) = fω+n(n) > (nnn) = (nnn→ 1)
  • fω2+k(n) > (nnnk)
  • fω3(n) > (nnnn)
  • fωk(n) > (nn → ... → nn) (Chain of k+1 n's)
  • fω2(n) = fωn(n) > (nn → ... → nn) (Chain of n+1 n's)

Read more about this topic:  Large Numbers

Famous quotes containing the words creating, faster and/or increasing:

    I have an intense personal interest in making the use of American capital in the development of China an instrument for the promotion of the welfare of China, and an increase in her material prosperity without entanglements or creating embarrassment affecting the growth of her independent political power, and the preservation of her territorial integrity.
    William Howard Taft (1857–1930)

    Unignorant,
    modest and unemotional, and all emotion,
    he has everlasting vigor,
    power to grow,
    though there are few creatures who can make one
    breathe faster and make one erecter.
    Marianne Moore (1887–1972)

    Yet I doubt not through the ages one increasing purpose runs,
    And the thoughts of men are widened with the process of the suns.
    Alfred Tennyson (1809–1892)