Laplace Transform Applied To Differential Equations
The Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions.
First consider the following property of the Laplace transform:
One by induction can prove that
Now we consider the following differential equation:
with given initial conditions
Using the linearity of the Laplace transform it is equivalent to rewrite the equation as
obtaining
Solving the equation for and substituting with one obtains
The solution for f(t) is obtained by applying the inverse Laplace transform to
Note that if the initial conditions are all zero, i.e.
then the formula simplifies to
Read more about Laplace Transform Applied To Differential Equations: An Example, Bibliography
Famous quotes containing the words laplace, transform, applied and/or differential:
“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.”
—Pierre Simon De Laplace (17491827)
“God defend me from that Welsh fairy,
Lest he transform me to a piece of cheese!”
—William Shakespeare (15641616)
“Children, I grant, should be innocent; but when the epithet is applied to men, or women, it is but a civil term for weakness.”
—Mary Wollstonecraft (17591797)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)