Laplace Expansion

In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant |B| of an n × n square matrix B that is a weighted sum of the determinants of n sub-matrices of B, each of size (n−1) × (n−1). The Laplace expansion is of theoretical interest as one of several ways to view the determinant, as well as of practical use in determinant computation.

The i, j cofactor of B is the scalar Cij defined by

where Mij is the i, j minor matrix of B, that is, the determinant of the (n–1) × (n–1) matrix that results from deleting the i-th row and the j-th column of B.

Then the Laplace expansion is given by the following

Theorem. Suppose B = (bij) is an n × n matrix and fix any i, j ∈ {1, 2, ..., n}.

Then its determinant |B| is given by:

\begin{align}|B| & {} = b_{i1} C_{i1} + b_{i2} C_{i2} + \cdots + b_{in} C_{in} \\ & {} = b_{1j} C_{1j} + b_{2j} C_{2j} + \cdots + b_{nj} C_{nj} \\
& {} = \sum_{j'=1}^{n} b_{ij'} C_{ij'} = \sum_{i'=1}^{n} b_{i'j} C_{i'j} . \end{align}

Read more about Laplace Expansion:  Examples, Proof

Famous quotes containing the words laplace and/or expansion:

    Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.
    —Pierre Simon De Laplace (1749–1827)

    Every expansion of government in business means that government in order to protect itself from the political consequences of its errors and wrongs is driven irresistibly without peace to greater and greater control of the nation’s press and platform. Free speech does not live many hours after free industry and free commerce die.
    Herbert Hoover (1874–1964)