Lanczos Tensor - Wave Equation

Wave Equation

The Lanczos potential tensor satisfies a wave equation

\begin{align}\Box H_{abc} = & J_{abc}\\
& {}- 2{R_c}^d H_{abd}+{R_a}^d H_{bcd}+{R_b}^d H_{acd}\\
& {}+ \left( H_{dbe}g_{ac}-H_{dae}g_{bc} \right)R^{de}+\frac{1}{2}RH_{abc},\end{align}

where is the d'Alembert operator and

is known as the Cotton tensor. Since the Cotton tensor depends only on covariant derivatives of the Ricci tensor, it can perhaps be interpreted as a kind of matter current. The additional self-coupling terms have no direct electromagnetic equivalent. These self-coupling terms, however, do not affect the vacuum solutions, where the Ricci tensor vanishes and the curvature is described entirely by the Weyl tensor. Thus in vacuum, the Einstein field equations are equivalent to the homogeneous wave equation in perfect analogy to the vacuum wave equation of the electromagnetic four-potential. This shows a formal similarity between gravitational waves and electromagnetic waves, with the Lanczos tensor well-suited for studying gravitational waves.

In the weak field approximation where, a convenient form for the Lanczos tensor in the Lanczos gauge is

Read more about this topic:  Lanczos Tensor

Famous quotes containing the words wave and/or equation:

    When disaster waves, I try not to wave back.
    Mason Cooley (b. 1927)

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)