Lambert's Cosine Law - Details of Equal Brightness Effect

Details of Equal Brightness Effect

The situation for a Lambertian surface (emitting or scattering) is illustrated in Figures 1 and 2. For conceptual clarity we will think in terms of photons rather than energy or luminous energy. The wedges in the circle each represent an equal angle , and for a Lambertian surface, the number of photons per second emitted into each wedge is proportional to the area of the wedge.

It can be seen that the length of each wedge is the product of the diameter of the circle and cos(θ). It can also be seen that the maximum rate of photon emission per unit solid angle is along the normal and diminishes to zero for θ = 90°. In mathematical terms, the radiance along the normal is I photons/(s·cm2·sr) and the number of photons per second emitted into the vertical wedge is I dA. The number of photons per second emitted into the wedge at angle θ is I cos(θ) dA.

Figure 2 represents what an observer sees. The observer directly above the area element will be seeing the scene through an aperture of area dA0 and the area element dA will subtend a (solid) angle of 0. We can assume without loss of generality that the aperture happens to subtend solid angle when "viewed" from the emitting area element. This normal observer will then be recording I dA photons per second and so will be measuring a radiance of


I_0=\frac{I\, d\Omega\, dA}{d\Omega_0\, dA_0}
photons/(s·cm2·sr).

The observer at angle θ to the normal will be seeing the scene through the same aperture of area dA0 and the area element dA will subtend a (solid) angle of 0 cos(θ). This observer will be recording I cos(θ) dA photons per second, and so will be measuring a radiance of


I_0=\frac{I \cos(\theta)\, d\Omega\, dA}{d\Omega_0\, \cos(\theta)\, dA_0}
=\frac{I\, d\Omega\, dA}{d\Omega_0\, dA_0}
photons/(s·cm2·sr),

which is the same as the normal observer.

Read more about this topic:  Lambert's Cosine Law

Famous quotes containing the words details of, details, equal, brightness and/or effect:

    Patience is a most necessary qualification for business; many a man would rather you heard his story than granted his request. One must seem to hear the unreasonable demands of the petulant, unmoved, and the tedious details of the dull, untired. That is the least price that a man must pay for a high station.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    If my sons are to become the kind of men our daughters would be pleased to live among, attention to domestic details is critical. The hostilities that arise over housework...are crushing the daughters of my generation....Change takes time, but men’s continued obliviousness to home responsibilities is causing women everywhere to expire of trivialities.
    Mary Kay Blakely (20th century)

    The law is equal before all of us; but we are not all equal before the law. Virtually there is one law for the rich and another for the poor, one law for the cunning and another for the simple, one law for the forceful and another for the feeble, one law for the ignorant and another for the learned, one law for the brave and another for the timid, and within family limits one law for the parent and no law at all for the child.
    George Bernard Shaw (1856–1950)

    Awareness of the stars and their light pervades the Koran, which reflects the brightness of the heavenly bodies in many verses. The blossoming of mathematics and astronomy was a natural consequence of this awareness. Understanding the cosmos and the movements of the stars means understanding the marvels created by Allah. There would be no persecuted Galileo in Islam, because Islam, unlike Christianity, did not force people to believe in a “fixed” heaven.
    Fatima Mernissi, Moroccan sociologist. Islam and Democracy, ch. 9, Addison-Wesley Publishing Co. (Trans. 1992)

    To speak impartially, the best men that I know are not serene, a world in themselves. For the most part, they dwell in forms, and flatter and study effect only more finely than the rest.
    Henry David Thoreau (1817–1862)