Lambert Series - Examples

Examples

Since this last sum is a typical number-theoretic sum, almost any natural multiplicative function will be exactly summable when used in a Lambert series. Thus, for example, one has

where is the number of positive divisors of the number n.

For the higher order sigma functions, one has

where is any complex number and

is the divisor function.

Lambert series in which the an are trigonometric functions, for example, an = sin(2n x), can be evaluated by various combinations of the logarithmic derivatives of Jacobi theta functions.

Other Lambert series include those for the Möbius function :

For Euler's totient function :

For Liouville's function :

\sum_{n=1}^\infty \lambda(n)\,\frac{q^n}{1-q^n} =
\sum_{n=1}^\infty q^{n^2}

with the sum on the left similar to the Ramanujan theta function.

Read more about this topic:  Lambert Series

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)