Lamb Waves - Point Sources and Waves With Cylindrical Symmetry

Point Sources and Waves With Cylindrical Symmetry

While Lamb's analysis assumed a straight wavefront, it has been shown* that the same characteristic equations apply to axisymmetric plate waves (e.g. waves propagating with circular wavefronts from point sources, like ripples from a stone dropped into a pond). The difference is that whereas the "carrier" for the straight wavefront is a sinusoid, the "carrier" for the axisymmetric wave is a Bessel function. The Bessel function takes care of the singularity at the source, then converges towards sinusoidal behavior at great distances.

  • Klaes, M, in Journées d'Etudes sur l'Emission Acoustique, INSA de Lyon (France), 1978.

Read more about this topic:  Lamb Waves

Famous quotes containing the words point, sources, waves and/or symmetry:

    For pain is perhaps but a violent pleasure? Who could determine the point where pleasure becomes pain, where pain is still a pleasure? Is not the utmost brightness of the ideal world soothing to us, while the lightest shadows of the physical world annoy?
    Honoré De Balzac (1799–1850)

    My profession brought me in contact with various minds. Earnest, serious discussion on the condition of woman enlivened my business room; failures of banks, no dividends from railroads, defalcations of all kinds, public and private, widows and orphans and unmarried women beggared by the dishonesty, or the mismanagement of men, were fruitful sources of conversation; confidence in man as a protector was evidently losing ground, and women were beginning to see that they must protect themselves.
    Harriot K. Hunt (1805–1875)

    There is no sea more dangerous than the ocean of practical politics—none in which there is more need of good pilotage and of a single, unfaltering purpose when the waves rise high.
    Thomas Henry Huxley (1825–1895)

    What makes a regiment of soldiers a more noble object of view than the same mass of mob? Their arms, their dresses, their banners, and the art and artificial symmetry of their position and movements.
    George Gordon Noel Byron (1788–1824)