Lagrange's Four-square Theorem - Generalizations

Generalizations

Lagrange's four-square theorem is a special case of the Fermat polygonal number theorem and Waring's problem. Another possible generalisation is the following problem: Given natural numbers a, b, c, d, can we solve

n = ax12 + bx22 + cx32 + dx42

for all positive integers n in integers x1, x2, x3, x4? The case a = b = c = d = 1 is answered in the positive by Lagrange's four-square theorem. The general solution was given by Ramanujan. He proved that if we assume, without loss of generality, that abcd then there are exactly 54 possible choices for a, b, c, d such that the problem is solvable in integers x1, x2, x3, x4 for all n. (Ramanujan listed a 55th possibility a = 1, b = 2, c = 5, d = 5, but in this case the problem is not solvable if n = 15.)

Read more about this topic:  Lagrange's Four-square Theorem