Definition
A topological space is a set with a function
called the closure operator where is the power set of .
The closure operator has to satisfy the following properties for all
- (Extensivity)
- (Idempotence)
- (Preservation of binary unions)
- (Preservation of nullary unions)
If the second axiom, that of idempotence, is relaxed, then the axioms define a preclosure operator.
Read more about this topic: Kuratowski Closure Axioms
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)