Friedman's Finite Form
Friedman (2002) observed that Kruskal's tree theorem has special cases that can be stated but not proved in first-order arithmetic (though they can easily be proved in second-order arithmetic). Another similar statement is the Paris–Harrington theorem, but Friedman's finite form of Kruskal's theorem needs a much stronger fragment of second-order arithmetic to prove than the Paris-Harrington principle.
Suppose that P(n) is the statement
- There is some m such that if T1,...,Tm is a finite sequence of trees where Tk has k+n vertices, then Ti ≤ Tj for some i < j.
This is essentially a special case of Kruskal's theorem, where the size of the first tree is specified, and the trees are constrained to grow in size at the simplest non-trivial growth rate. For each n, Peano arithmetic can prove that P(n) is true, but Peano arithmetic cannot prove the statement "P(n) is true for all n". Moreover the shortest proof of P(n) in Peano arithmetic grows phenomenally fast as a function of n; far faster than any primitive recursive function or the Ackermann function for example.
Friedman also proved the following finite form of Kruskal's theorem for labelled trees with no order among siblings, parameterising on the size of the set of labels rather than on the size of the first tree in the sequence (and the homeomorphic embedding, ≤, now being inf- and label-preserving):
- For every n, there is an m so large that if T1,...,Tm is a finite sequence of trees with vertices labelled from a set of n labels, where each Ti has at most i vertices, then Ti ≤ Tj for some i < j.
The latter theorem ensures the existence of a rapidly growing function that Friedman called TREE, such that TREE(n) is the length of a longest sequence of n-labelled trees T1,...,Tm in which each Ti has at most i vertices, and no tree is embeddable into a later tree.
The TREE sequence begins TREE(1) = 1, TREE(2) = 3, then suddenly TREE(3) explodes to a value so enormously large that many other "large" combinatorial constants, such as Friedman's n(4), are extremely small by comparison. A lower bound for n(4), and hence an extremely weak lower bound for TREE(3), is A(A(...A(1)...)), where the number of A's is A(187196), and A is a version of Ackermann's function: A(x) = 2↑x-1x in Knuth's up-arrow notation. Graham's number, for example, is approximately A64(4) which is much smaller than the lower bound AA(187196)(1). It can be shown that the growth-rate of the function TREE exceeds that of the function fΓ0 in the fast-growing hierarchy, where Γ0 is the Feferman–Schütte ordinal.
The ordinal measuring the strength of Kruskal's theorem is the small Veblen ordinal (sometimes confused with the smaller Ackermann ordinal).
Read more about this topic: Kruskal's Tree Theorem
Famous quotes containing the words friedman, finite and/or form:
“The mystery form is like gymnastic equipment: you can grasp hold of it and show off what you can do.”
—Mickey Friedman (b. 1944)
“Any language is necessarily a finite system applied with different degrees of creativity to an infinite variety of situations, and most of the words and phrases we use are prefabricated in the sense that we dont coin new ones every time we speak.”
—David Lodge (b. 1935)
“Well then! Wagner was a revolutionaryhe fled the Germans.... As an artist one has no home in Europe outside Paris: the délicatesse in all five artistic senses that is presupposed by Wagners art, the fingers for nuances, the psychological morbidity are found only in Paris. Nowhere else is this passion in questions of form to be found, this seriousness in mise en scènewhich is Parisian seriousness par excellence.”
—Friedrich Nietzsche (18441900)