Probability Models and The Kolmogorov Structure Function
For every computable probability distribution P it can be proved that . For example, if P is the uniform distribution on the set S of strings of length n, then each has probability . In the general case of computable probability mass functions we incur a logarithmic additive error term. Kolmogorov's structure function becomes
where x is a binary string of length n with where P is a contemplated model (computable probability of n-length strings) for x, is the Kolmogorov complexity of P and is an integer value bounding the complexity of the contemplated P's. Clearly, this function is nonincreasing and reaches for where c is the required number of bits to change x into and is the Kolmogorov complexity of x. Then . For every complexity level the function is the Kolmogorov complexity version of the maximum likelihood (ML).
Read more about this topic: Kolmogorov Structure Function
Famous quotes containing the words probability, models, structure and/or function:
“Liberty is a blessing so inestimable, that, wherever there appears any probability of recovering it, a nation may willingly run many hazards, and ought not even to repine at the greatest effusion of blood or dissipation of treasure.”
—David Hume (17111776)
“Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.”
—Marshall McLuhan (19111980)
“The philosopher believes that the value of his philosophy lies in its totality, in its structure: posterity discovers it in the stones with which he built and with which other structures are subsequently built that are frequently betterand so, in the fact that that structure can be demolished and yet still possess value as material.”
—Friedrich Nietzsche (18441900)
“The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.”
—Clarence Lewis (18831964)