Probability Models and The Kolmogorov Structure Function
For every computable probability distribution P it can be proved that . For example, if P is the uniform distribution on the set S of strings of length n, then each has probability . In the general case of computable probability mass functions we incur a logarithmic additive error term. Kolmogorov's structure function becomes
where x is a binary string of length n with where P is a contemplated model (computable probability of n-length strings) for x, is the Kolmogorov complexity of P and is an integer value bounding the complexity of the contemplated P's. Clearly, this function is nonincreasing and reaches for where c is the required number of bits to change x into and is the Kolmogorov complexity of x. Then . For every complexity level the function is the Kolmogorov complexity version of the maximum likelihood (ML).
Read more about this topic: Kolmogorov Structure Function
Famous quotes containing the words probability, models, structure and/or function:
“The probability of learning something unusual from a newspaper is far greater than that of experiencing it; in other words, it is in the realm of the abstract that the more important things happen in these times, and it is the unimportant that happens in real life.”
—Robert Musil (18801942)
“The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.”
—Woodrow Wilson (18561924)
“Just as a new scientific discovery manifests something that was already latent in the order of nature, and at the same time is logically related to the total structure of the existing science, so the new poem manifests something that was already latent in the order of words.”
—Northrop Frye (b. 1912)
“The function of the actor is to make the audience imagine for the moment that real things are happening to real people.”
—George Bernard Shaw (18561950)