Explanation of The Conditions
The two conditions required by the theorem are trivially satisfied by any stochastic process. For example, consider a real-valued discrete-time stochastic process . Then the probability can be computed either as or as . Hence, for the finite-dimensional distributions to be consistent, it must hold that . The first condition generalises this obvious statement to hold for any number of time points, and any control sets .
Continuing the example, the second condition implies that . Also this is a trivial statement that must be satisfied for any consistent family of finite-dimensional distributions.
Read more about this topic: Kolmogorov Extension Theorem
Famous quotes containing the words explanation of the, explanation of, explanation and/or conditions:
“Herein is the explanation of the analogies, which exist in all the arts. They are the re-appearance of one mind, working in many materials to many temporary ends. Raphael paints wisdom, Handel sings it, Phidias carves it, Shakspeare writes it, Wren builds it, Columbus sails it, Luther preaches it, Washington arms it, Watt mechanizes it. Painting was called silent poetry, and poetry speaking painting. The laws of each art are convertible into the laws of every other.”
—Ralph Waldo Emerson (18031882)
“There is a great deal of unmapped country within us which would have to be taken into account in an explanation of our gusts and storms.”
—George Eliot [Mary Ann (or Marian)
“Are cans constitutionally iffy? Whenever, that is, we say that we can do something, or could do something, or could have done something, is there an if in the offingsuppressed, it may be, but due nevertheless to appear when we set out our sentence in full or when we give an explanation of its meaning?”
—J.L. (John Langshaw)
“My dear young friend ... civilization has absolutely no need of nobility or heroism. These things are symptoms of political inefficiency. In a properly organized society like ours, nobody has any opportunities for being noble or heroic. Conditions have got to be thoroughly unstable before the occasion can arise.”
—Aldous Huxley (18941963)