Kleisli Category - Formal Definition

Formal Definition

Let〈T, η, μ〉be a monad over a category C. The Kleisli category of C is the category CT whose objects and morphisms are given by

\begin{align}\mathrm{Obj}({\mathcal{C}_T}) &= \mathrm{Obj}({\mathcal{C}}), \\
\mathrm{Hom}_{\mathcal{C}_T}(X,Y) &= \mathrm{Hom}_{\mathcal{C}}(X,TY).\end{align}

That is, every morphism f: X → T Y in C (with codomain TY) can also be regarded as a morphism in CT (but with codomain Y). Composition of morphisms in CT is given by

where f: X → T Y and g: Y → T Z. The identity morphism is given by the monad unit η:

.

An alternative way of writing this, which clarifies the category in which each object lives, is used by Mac Lane. We use very slightly different notation for this presentation. Given the same monad and category as above, we associate with each object in a new object, and for each morphism in a morphism . Together, these objects and morphisms form our category, where we define

Then the identity morphism in is

Read more about this topic:  Kleisli Category

Famous quotes containing the words formal and/or definition:

    The formal Washington dinner party has all the spontaneity of a Japanese imperial funeral.
    Simon Hoggart (b. 1946)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)