Finiteness Conditions
- A Kleinian group is said to be of finite type if its region of discontinuity has a finite number of components, and the quotient of each component by its stabilizer is a compact Riemann surface with finitely many points removed, and the covering is ramified at finitely many points.
- A Kleinian group is called finitely generated if it has a finite number of generators. The Ahlfors finiteness theorem says that such a group is of finite type.
- A Kleinian group Γ has finite covolume if H3/Γ has finite volume. Any Kleinian group of finite covolume is finitely generated.
- A Kleinian group is called geometrically finite is it has a fundamental polyhedron (in hyperbolic 3-space) with finitely many sides. Ahlfors showed that if the limit set is not the whole Riemann sphere then it has measure 0.
- A Kleinian group Γ is called arithmetic if it is commensurable with the group of units of an order of quaternion algebra A ramified at all real places over a number field k with exactly one complex place. Arithmetic Kleinian groups have finite covolume.
- A Kleinian group Γ is called cocompact if H3/Γ is compact, or equivalently SL(2, C)/Γ is compact. Cocompact Kleinian groups have finite covolume.
- A Kleinian group is called topologically tame if it is finitely generated and its hyperbolic manifold is homeomorphic to the interior of a compact manifold with boundary.
- A Kleinian group is called geometrically tame if its ends are either geometrically finite or simply degenerate (Thurston 1980).
Read more about this topic: Kleinian Group
Famous quotes containing the word conditions:
“Ours is a culture based on excess, on overproduction; the result is a steady loss of sharpness in our sensory experience. All the conditions of modern lifeits material plenitude, its sheer crowdednessconjoin to dull our sensory faculties.”
—Susan Sontag (b. 1933)
Related Subjects
Related Phrases
Related Words