Kernel (category Theory) - Definition

Definition

Let C be a category. In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if f : XY is an arbitrary morphism in C, then a kernel of f is an equaliser of f and the zero morphism from X to Y. In symbols:

ker(f) = eq(f, 0XY)

To be more explicit, the following universal property can be used. A kernel of f is any morphism k : KX such that:

  • f k is the zero morphism from K to Y;
  • Given any morphism k′ : K′ → X such that f k′ is the zero morphism, there is a unique morphism u : K′ → K such that k u = k'.

Note that in many concrete contexts, one would refer to the object K as the "kernel", rather than the morphism k. In those situations, K would be a subset of X, and that would be sufficient to reconstruct k as an inclusion map; in the nonconcrete case, in contrast, we need the morphism k to describe how K is to be interpreted as a subobject of X. In any case, one can show that k is always a monomorphism (in the categorical sense of the word). One may prefer to think of the kernel as the pair (K,k) rather than as simply K or k alone.

Not every morphism needs to have a kernel, but if it does, then all its kernels are isomorphic in a strong sense: if k : KX and l : LX are kernels of f : XY, then there exists a unique isomorphism φ : KL such that l o φ = k.

Read more about this topic:  Kernel (category Theory)

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)