Joukowsky Transform - General Joukowsky Transform

General Joukowsky Transform

The Joukowsky transform of any complex number to is as follows


\begin{align} z &= x + iy =\zeta+\frac{1}{\zeta}
\\ &= \chi + i \eta + \frac{1}{\chi + i \eta}
\\ &= \chi + i \eta + \frac{(\chi - i \eta)}{\chi^2 + \eta^2}
\\ &= \frac{\chi (\chi^2 + \eta^2 + 1)}{\chi^2 + \eta^2} + i\frac{\eta (\chi^2 + \eta^2 - 1)}{\chi^2 + \eta^2}.
\end{align}

So the real (x) and imaginary (y) components are:


\begin{align} x &= \frac{\chi (\chi^2 + \eta^2 + 1)}{\chi^2 + \eta^2} \qquad \text{and} \\ y &= \frac{\eta (\chi^2 + \eta^2 - 1)}{\chi^2 + \eta^2}.
\end{align}

Read more about this topic:  Joukowsky Transform

Famous quotes containing the words general and/or transform:

    Through the particular, in wartime, I felt the high-voltage current of the general pass.
    Elizabeth Bowen (1899–1973)

    God defend me from that Welsh fairy,
    Lest he transform me to a piece of cheese!
    William Shakespeare (1564–1616)