Jordan Normal Form - Powers

Powers

If n is a natural number, the nth power of a matrix in Jordan normal form will be a direct sum of upper triangular matrices, as a result of block multiplication. More specifically, after exponentiation each Jordan block will be an upper triangular block.

For example,


\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5
\end{bmatrix}^4
=\begin{bmatrix} 16 & 32 & 24 & 0 & 0 \\ 0 & 16 & 32 & 0 & 0 \\ 0 & 0 & 16 & 0 & 0 \\ 0 & 0 & 0 & 625 & 500 \\ 0 & 0 & 0 & 0 & 625
\end{bmatrix}.

Further, each triangular block will consist of λn on the main diagonal, times λn-1 on the upper diagonal, and so on. This expression is valid for negative integer powers as well if one extends the notion of the binomial coefficients .

For example,


\begin{bmatrix} \lambda_1 & 1 & 0 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 & 0 \\ 0 & 0 & \lambda_1 & 0 & 0 \\ 0 & 0 & 0 & \lambda_2 & 1 \\ 0 & 0 & 0 & 0 & \lambda_2
\end{bmatrix}^n
=\begin{bmatrix} \lambda_1^n & \tbinom{n}{1}\lambda_1^{n-1} & \tbinom{n}{2}\lambda_1^{n-2} & 0 & 0 \\ 0 & \lambda_1^n & \tbinom{n}{1}\lambda_1^{n-1} & 0 & 0 \\ 0 & 0 & \lambda_1^n & 0 & 0 \\ 0 & 0 & 0 & \lambda_2^n & \tbinom{n}{1}\lambda_2^{n-1} \\ 0 & 0 & 0 & 0 & \lambda_2^n
\end{bmatrix}.

Read more about this topic:  Jordan Normal Form

Famous quotes containing the word powers:

    Anti-Nebraska, Know-Nothings, and general disgust with the powers that be, have carried this county [Hamilton County, Ohio] by between seven and eight thousand majority! How people do hate Catholics, and what a happiness it was to show it in what seemed a lawful and patriotic manner.
    Rutherford Birchard Hayes (1822–1893)

    To receive applause for works which do not demand all our powers hinders our advance towards a perfecting of our spirit. It usually means that thereafter we stand still.
    —G.C. (Georg Christoph)

    Dear to us are those who love us, the swift moments we spend with them are a compensation for a great deal of misery; they enlarge our life;Mbut dearer are those who reject us as unworthy, for they add another life: they build a heaven before us, whereof we had not dreamed, and thereby supply to us new powers out of the recesses of the spirit, and urge us to new and unattempted performances.
    Ralph Waldo Emerson (1803–1882)