Jordan Algebra - Peirce Decomposition

Peirce Decomposition

If e is an idempotent in a Jordan algebra A (e2=e) and R is the operation of multiplication by e, then

  • R(2R−1)(R−1) = 0

so the only eigenvalues of R are 0, 1/2, 1. If the Jordan algebra A is finite-dimensional over a field of characteristic not 2, this implies that it is a direct sum of subspaces A = A0(e) ⊕ A1/2(e) ⊕ A1(e) of the three eigenspaces. This decomposition was introduced by Albert (1947) and is called the Peirce decomposition of A relative to the idempotent e.

Read more about this topic:  Jordan Algebra

Famous quotes containing the word peirce:

    It has often been argued that absolute scepticism is self-contradictory; but this is a mistake: and even if it were not so, it would be no argument against the absolute sceptic, inasmuch as he does not admit that no contradictory propositions are true. Indeed, it would be impossible to move such a man, for his scepticism consists in considering every argument and never deciding upon its validity; he would, therefore, act in this way in reference to the arguments brought against him.
    —Charles Sanders Peirce (1839–1914)