Definition
For any integer a and any positive odd integer n the Jacobi symbol is defined as the product of the Legendre symbols corresponding to the prime factors of n:
represents the Legendre symbol, defined for all integers a and all odd primes p by
Following the normal convention for the empty product, The Legendre and Jacobi symbols are indistinguishable exactly when the lower argument is an odd prime, in which case they have the same value.
Read more about this topic: Jacobi Symbol
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)