Analysis of Model Fit
As with any use of mathematical models, it is important to assess the fit of the data to the model. If item misfit with any model is diagnosed as due to poor item quality, for example confusing distractors in a multiple-choice test, then the items may be removed from that test form and rewritten or replaced in future test forms. If, however, a large number of misfitting items occur with no apparent reason for the misfit, the construct validity of the test will need to be reconsidered and the test specifications may need to be rewritten. Thus, misfit provides invaluable diagnostic tools for test developers, allowing the hypotheses upon which test specifications are based to be empirically tested against data.
There are several methods for assessing fit, such as a chi-square statistic, or a standardized version of it. Two and three-parameter IRT models adjust item discrimination, ensuring improved data-model fit, so fit statistics lack the confirmatory diagnostic value found in one-parameter models, where the idealized model is specified in advance.
Data should not be removed on the basis of misfitting the model, but rather because a construct relevant reason for the misfit has been diagnosed, such as a non-native speaker of English taking a science test written in English. Such a candidate can be argued to not belong to the same population of persons depending on the dimensionality of the test, and, although one parameter IRT measures are argued to be sample-independent, they are not population independent, so misfit such as this is construct relevant and does not invalidate the test or the model. Such an approach is an essential tool in instrument validation. In two and three-parameter models, where the psychometric model is adjusted to fit the data, future administrations of the test must be checked for fit to the same model used in the initial validation in order to confirm the hypothesis that scores from each administration generalize to other administrations. If a different model is specified for each administration in order to achieve data-model fit, then a different latent trait is being measured and test scores cannot be argued to be comparable between administrations.
Read more about this topic: Item Response Theory
Famous quotes containing the words analysis of, analysis, model and/or fit:
“Cubism had been an analysis of the object and an attempt to put it before us in its totality; both as analysis and as synthesis, it was a criticism of appearance. Surrealism transmuted the object, and suddenly a canvas became an apparition: a new figuration, a real transfiguration.”
—Octavio Paz (b. 1914)
“Cubism had been an analysis of the object and an attempt to put it before us in its totality; both as analysis and as synthesis, it was a criticism of appearance. Surrealism transmuted the object, and suddenly a canvas became an apparition: a new figuration, a real transfiguration.”
—Octavio Paz (b. 1914)
“The best way to teach a child restraint and generosity is to be a model of those qualities yourself. If your child sees that you want a particular item but refrain from buying it, either because it isnt practical or because you cant afford it, he will begin to understand restraint. Likewise, if you donate books or clothing to charity, take him with you to distribute the items to teach him about generosity.”
—Lawrence Balter (20th century)
“No person can be considered as possessing a good education without religion. A good education is that which prepares us for our future sphere of action and makes us contented with that situation in life in which God, in his infinite mercy, has seen fit to place us, to be perfectly resigned to our lot in life, whatever it may be.”
—Ann Plato (1820?)